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Abstract

Cleaning and disinfecting tasks and product use are associated with elevated prevalence of asthma 

and respiratory symptoms among healthcare workers; however, the levels of exposure that pose a 

health risk remain unclear. The objective of this study was to estimate the peak, average, and 

determinants of real-time total volatile organic compound (TVOC) exposure associated with 

cleaning tasks and product-use. TVOC exposures were measured using monitors equipped with a 

photoionization detector (PID). A simple correction factor was applied to the real-time 

measurements, calculated as a ratio of the full-shift average TVOC concentrations from a time-

integrated canister and the PID sample, for each sample pair. During sampling, auxiliary 

information, e.g. tasks, products used, engineering controls, was recorded on standardized data 

collection forms at 5-min intervals. Five-minute averaged air measurements (n = 10 276) from 129 

time-series comprising 92 workers and four hospitals were used to model the determinants of 

exposures. The statistical model simultaneously accounted for censored data and non-stationary 

autocorrelation and was fit using Markov-Chain Monte Carlo within a Bayesian context. Log-

transformed corrected concentrations (cTVOC) were modeled, with the fixed-effects of tasks and 

covariates, that were systematically gathered during sampling, and random effect of person-day. 

The model-predicted geometric mean (GM) cTVOC concentrations ranged from 387 parts per 

billion (ppb) for the task of using a product containing formaldehyde in laboratories to 2091 ppb 

for the task of using skin wipes containing quaternary ammonium compounds, with a GM of 925 

ppb when no products were used. Peak exposures quantified as the 95th percentile of 15-min 
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averages for these tasks ranged from 3172 to 17 360 ppb. Peak and GM task exposures varied by 

occupation and hospital unit. In the multiple regression model, use of sprays was associated with 

increasing exposures, while presence of local exhaust ventilation, large room volume, and 

automatic sterilizer use were associated with decreasing exposures. A detailed understanding of 

factors affecting TVOC exposure can inform targeted interventions to reduce exposures and can be 

used in epidemiologic studies as metrics of short-duration peak exposures.
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Introduction

In healthcare settings, cleaning and disinfecting is critical for maintaining infection control. 

The high cost of healthcare-associated infections (HAI) coupled with the risk posed to the 

safety of patients and healthcare workers, has increased demand for effective cleaning and 

disinfection products (Weber et al., 2012; Zimlichman et al., 2013). At the same time, 

epidemiologic studies have reported increased risk of asthma, rhinitis, and respiratory 

symptoms among workers performing cleaning and disinfecting tasks in multiple 

occupations (Zock et al., 2010). These tasks include: cleaning surfaces, sterilizing 

instruments, using products on patients, and using cleaning and disinfecting products such as 

general-purpose cleaners (e.g. bleach), high-level disinfectants (HLD, e.g. glutaraldehyde), 

and spray products (Zock et al., 2010; Siracusa et al., 2013; Folletti et al., 2017). Cleaning 

and disinfecting products are complex chemical mixtures that often contain multiple 

respiratory sensitizers and irritants (Wolkoff et al., 1998; Quirce and Barranco, 2010; Gerster 

et al., 2014). However, the specific chemical exposures and the levels at which they pose a 

health risk is not well understood. Quantitative exposure data are needed in epidemiological 

studies to better understand the levels at which health risks occur, and to begin the 

discussion on balancing exposure control measures with infection control needs.

Comprehensive exposure assessments for cleaning and disinfecting chemicals are rare in 

healthcare settings. The few studies conducted in hospitals have reported exposure to 

alcohols (ethanol, 2-propanol); ketones (acetone); terpenes (d-limonene, α-pinene); 

peroxygen compounds (hydrogen peroxide, peracetic acid); monoethanolamines; glycol 

ethers (e.g. 2-butoxyethanol, ethylene glycol mono-n-butyl ether); benzyl alcohol; aldehydes 

(formaldehyde, glutaraldehyde); quaternary ammonium compounds (e.g. 

benzyldimethyldodecyl ammonium chloride, benzyldimethyltetradecyl ammonium 

chloride); and aliphatic, aromatic, and halogenated hydrocarbons, using personal, mobile-

area or stationary, time-integrated samplers (Teschke et al., 2002; Bessonneau et al., 2013; 

LeBouf et al., 2014; Melchior Gerster et al., 2014; Hawley et al., 2017; LeBouf et al., 2017). 

Modeling factors affecting exposure to cleaning and disinfecting chemicals is essential to 

explain sources of exposure variability, but is also rare in the healthcare setting. One study 

identified product type, task, room volume and ventilation, and product concentration as 

significant predictors of 2-butoxyethanol exposures in a quasi-experimental study (Bello et 

al., 2013). A recent study of several healthcare occupations evaluated the determinants of 
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exposure to full-shift total volatile organic compounds (TVOC), ethanol, 2-propanol, 

acetone, d-limonene, α-pinene, and chloroform, focusing on tasks, product-application, 

amount of product, background activities, product ingredients, and local exhaust ventilation 

as predictors (Su et al., 2018). The study also provided estimates of geometric mean (GM) 

exposures to total and specific VOCs during product-application tasks.

TVOC exposure may be a useful surrogate of the complex mixture of chemicals present in 

cleaning and disinfecting products, and real-time measurements can provide additional 

exposure characteristics, such as peak exposures that may be relevant for asthma and 

irritation symptoms. Real-time measurements with observations or self-reported activity 

diaries can be particularly useful for identifying high-exposure tasks to target interventions. 

The objectives of this study were to (i) estimate TVOC exposure for cleaning product-

application tasks based on real-time measurements, (ii) evaluate the influence of time-

varying and time-independent covariates on TVOC exposures, and (iii) estimate metrics of 

peak exposure for product-application tasks based on exposure quantiles [e.g. 95th 

percentile (P95)]. A better understanding of factors affecting exposure to cleaning and 

disinfecting chemicals combined with estimates of means, variability, and quantiles will 

allow identification and prioritization of controls, and development of short-duration peak 

exposure metrics for use in epidemiologic studies (Heederik, 2014; Quinn et al., 2015).

Methods

Healthcare workers from 14 occupations were recruited from five hospitals comprising three 

U.S. Veterans Affairs (VA) and two teaching hospitals (Saito et al. 2015); only four hospitals 

are included in these analyses as explained below. Exposure assessment was conducted 

during spring and summer of 2009–2011. The occupations monitored included: clinical 

laboratory technician, certified nursing assistant, dental assistant, dental laboratory 

technician, endoscopy technician, floor stripper/waxer, housekeeper, licensed practical 

nurse, medical appliance technician, medical equipment preparer, pharmacy technician, 

registered nurse, respiratory therapist, and surgical technologist. Employees in these 

occupations worked in 12 areas of the hospital, denoted as hospital units. Real-time mobile-

area and personal TVOC samples were collected using ppbRae 2000 and ToxiRae 

PGM-1800 monitors (RAE Systems, Inc.) respectively, and each instrument was paired with 

their respective time-integrated 6 liter or 0.4 liter Silonite™ evacuated canister (Entech 

Instruments, Inc.) (Supplementary Figure S1, available at Annals of Occupational Hygiene 
online) (Lebouf et al., 2014). Mobile-area samples were kept in a basket that was transported 

by a technician, and was maintained within ~1.5 m of the healthcare worker at all times. 

Real-time instruments were equipped with photoionization detectors (PID) with 10.6-eV 

lamps; their specifications are provided in Supplementary Table S1 (available at Annals of 
Occupational Hygiene online). Canister samples were analyzed using gas chromatography/

mass spectrometry (GC/MS) for ethanol, acetone, 2-propanol, methylene chloride, hexane, 

chloroform, benzene, methyl methacrylate, toluene, ethylbenzene, m,p-xylene, o-xylene, α-

pinene, d-limonene, and the quantified 14 VOCs were summed as TVOC (LeBouf et al., 

2012). A real-time temperature and relative humidity meter (PRHTEMP 101, MadgeTech) 

that recorded measurements at 1-min intervals was placed in the mobile-area basket. During 

sampling, information on tasks, products used and their amounts, work location, engineering 
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controls, and personal protective equipment use, as well as cleaning tasks and product-

application by nearby workers, was recorded on standardized data collection forms at 5-min 

intervals (Saito et al. 2015; Su et al. 2018). Measurements from the PID samplers and 

temperature and humidity meter were averaged over 5-min intervals to match the 

observation data. Additional details on the sampling strategy, choice of sampling and 

analysis method, and results of specific VOC exposures and distributions of healthcare 

workers’ activities are reported elsewhere (LeBouf et al., 2012, LeBouf et al., 2014, Saito et 

al. 2015).

Calibration of PID instruments

Prior to each day of sampling, PIDs were calibrated according to manufacturer’s 

recommendations, which included zeroing the instrument with zero-grade air and span 

calibration with a single concentration of 10 parts per million (ppm) isobutylene. In addition, 

a simple correction factor was calculated as a ratio of the full-shift average TVOC 

concentration from the canister to the full-shift average TVOC concentration from the PID 

for each sample pair. This correction factor was applied to the 5-min average TVOC 

concentrations from the mobile-area and personal PIDs for each PID-canister sample pair, to 

adjust their respective readings to obtain canister-equivalent corrected TVOC concentrations 

(cTVOC). The manufacturer recommended mixed exposure response factor (MRF), which 

requires knowledge of the composition and proportions of the VOCs, was not used because 

the exposure mixture in the workplace likely varied over the full-shift with the use of 

different products. Moreover, a chamber study comparing responses of real-time PID 

samplers to time-integrated sorbent tubes for known VOC concentrations showed that the 

MRF-corrected TVOC concentration was less accurate than the uncorrected concentration, 

even when the VOC composition and proportion was known (LeBouf and Coffey, 2015). In 

the present analyses, correction factors could not be calculated for samples collected from 

the first of the five hospitals because the analytical method to measure the VOCs from the 

canister samples quantified only seven of the 14 VOCs, and thus the resulting TVOC 

concentrations could not be used to calibrate the PIDs; data from only four hospitals were 

used in the analysis.

Predictor variables

The 145 tasks and 222 products recorded in the observation sheets were combined and 

grouped into 27 product-application tasks, with a focus on cleaning product use for specific 

cleaning tasks, e.g. using alcohol wipes to clean patient skin, denoted as ‘alcohol skin wipe’ 

or using cleaning products containing quaternary ammonium compounds to clean surfaces, 

denoted as ‘quats surface cleaner’. Other non-cleaning tasks using products that can release 

VOCs were also coded, e.g. using formaldehyde in laboratory or using dental products. All 

other 5-min intervals of tasks where no products were used were combined into one task 

group, i.e. ‘no product use’. Henceforth, product-application tasks will be referred to as 

‘tasks’. Other covariates included three time-invariant factors: hospital, occupation and 

hospital unit, and 12 time-varying factors: presence of local exhaust, presence of general 

exhaust, number of air changes per hour, room pressure negative/positive, distance of 

mobile-area sampler from worker, room volume, use of sprays and wipes, automatic 

sterilizer use, types of mops used, amount of product used, relative humidity and 
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temperature. Room volume was categorized as large (>1232 ft3, the mode) or small (≤1232 

ft3). Amount of product used was dichotomized into small (gram, milligram, milliliter, 

teaspoon of quantity used) or large (gallon, kilogram, liter of quantity used). The 27 tasks 

were also combined with occupation to create occupation-specific tasks e.g. ‘alcohol skin 

wipe-RN’, or hospital unit to create unit-specific tasks e.g. ‘quats floor cleaner-critical care’, 

because some tasks were unique to certain occupations or units, e.g. using dental products in 

dental occupations or in a dental clinic or laboratory.

Statistical analysis

All data management and descriptive analyses were performed in SAS software version 9.4 

(SAS Institute Inc.). Summary statistics were calculated for the TVOC concentrations 

including scatter plots of full-shift average concentrations from the canister and PID 

samplers, scatter plots of mobile-area versus personal full-shift average and 5-min average 

measurements, and frequencies of predictor variables including tasks, three time-invariant 

factors and 12 time-varying factors.

Time-series of 5-min averages from the PID samplers were summarized using the method 

described by Houseman and Virji (2017). Briefly, this method provides an approach to 

model real-time exposure data that accounts for non-stationary autocorrelation via a spline 

basis, and censored data by integrating over the left tail of the distribution. The model was fit 

using Markov-Chain Monte Carlo (MCMC) within a Bayesian paradigm using non-

informative priors; 10 000 MCMC samples thinned by 10, were drawn from the posterior 

distribution to characterize the model parameters. For the spline, the choice of knots was 

based on the expected ‘roughness’, or meaningful variation of the measurements over short 

durations, and was set at every 7.5 min. The model incorporates fixed-effects covariates, 

hierarchical random effects, and provides a range of summary measures such as the mean, 

task-specific contributions to standard deviations and various quantiles of interest. 

Instructions on downloading the complete R-code to run this model is provided in 

Supplementary Methods (available at Annals of Occupational Hygiene online). The model is 

of the form:

Y ir~N{ai + α(wir) + xir
T β + ζi

Tb(tir), σe
2(wir)} (1)

where Yir is the repeated log-transformed exposure measurement for subject i, observation r 
(at time tir), α(wir) is mean log-concentration for task wir, performed by subject i at time tir 
β is the vector of parameters corresponding to the matrix of fixed-effect covariates xir

T

associated with subject i at time tir, ζi~MVNk(0k, σζ
2Ik) is a series-specific vector of random 

spline coefficients, b(tir) a vector of B-splines, a~N(0, σa
2) is a series-specific random 

intercept, and σe
2 is the variance of the task-specific contribution to variation. The series-

specific spline term ζi
Tb(tir)represents a smooth, series-specific function of time capturing 

the autocorrelated error present within the series. Note that the overall variation of Yir is 

captured not by σe
2(wir) alone, but rather by var(Y ir) = σa

2 + σζ
2b(tir)Tb(tir) + σe

2(wir). Note also 
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that the autocorrelation parameter is not finite, but rather entails an autocorrelation function 

which is approximated with a finite set of autocorrelation parameters. The covariation 

between two observations within the same series can be expressed by the covariation 

function cov(Y ir, Y is) = σa
2 + σζ

2b(tir)
Tb(tis), so that

corr(Yir, Yis) =
σa

2 + σζ
2b(tir)Tb(tis)

σa
2 + σe

2(wir) + σζ
2b(tir)Tb(tir) σa

2 + σe
2(wis) + σζ

2b(tis)Tb(tis)
.

The posterior distribution of quantiles of Yir (such as the P95) can be generated by 

calculating the corresponding quantiles of the right-hand side of equation (1) from the 

MCMC samples generated by the model. Similarly, posteriors of quantiles of time-

aggregated values, such as 15-min averages, for possible comparison to short-term exposure 

limits (STEL) or averages of other time intervals (more generally R−1∑r = 1
R exp(Y ir), where 

R = number of 5-min average measurements) are easily produced by generating the 

corresponding distributions (over 10 000 simulation samples) for each MCMC sample and 

estimating the appropriate quantile for each task. In this case, we chose the P95 of 15-min 

averages for each tasks to represent peak exposure. Finally, we note that this Bayesian model 

generates posterior parameter distributions and credible intervals (CI), not parameter 

estimates and confidence intervals; however, within a practical context, posterior means 

(p.mn.) and posterior medians (p.md.) have similar interpretation as parameter estimates, 

and CI have similar interpretations as confidence intervals.

All models used log-transformed cTVOC concentrations as the outcome variable Yir and 

included one main fixed-effect term for task (wir) and a random-effect term for person-day 

(indexed by i). Crude posterior distributions of the GM, geometric standard deviation (GSD) 

and P95 of cTVOC concentrations for tasks were obtained from this single predictor model. 

In the text, for simplicity we only report the p.md. for the GM, GSD and P95, whereas in the 

tables, the p.mn. and CI are also reported. Occupation- and unit-specific task posterior 

distributions were also obtained by replacing the task variable wr with the occupation- or 

unit- specific task variables in the model noted above. Models for tasks were then fit with 

one additional fixed-effect covariate from the three time-invariant and 12 time-varying 

factors to evaluate their influence on the cTVOC exposures. Consistent with a growing 

awareness of the limitations of significance testing and the importance of considering effect 

size and sample size (Nuzzo, 2014; Wasserstein and Lazar, 2016), variables whose 

parameters were in the expected direction were included in the final multiple regression 

model regardless of whether their CI included 0. Finally, for ease of interpretation of the 

model parameters α and β from a log-transformed model, percent change in cTVOC 

associated with one unit change in continuous variable or going from 0 to1 for an indicator 

variable was calculated as (exp(α or β)−1)*100%. Statistical modeling was done using the 

R-code described above, and plots were generated using the ggplot2 package both run in R 

3.3.1 (R Foundation for Statistical Computing) and SigmaPlot 14.0 (Systat Software Inc.).
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Results

Altogether 129 mobile-area samples from 92 participants on 40 days, and 111 personal 

samples from 82 participants on 39 days were used for summarizing and modeling the 

determinants of exposures. 5.1% of the 10 276 five-minute average mobile-area and 29.2% 

of the 8846 five-minute average personal TVOC measurements were below their respective 

LOD of 1 and 100 ppb. Figure 1 displays the scatter plots of full-shift average TVOC 

concentrations from the canister compared to the PID, for the mobile-area samples (Fig. 1a) 

and personal samples (Fig. 1b). The full-shift average concentrations from the mobile-area 

PIDs were mostly lower than the corresponding measurements from the canister samples 

and showed a moderate correlation (rs = 0.52, P < 0.05). The full-shift averages from the 

personal PIDs were highly variable and showed a negative correlation with the personal 

canister samples (rs = −0.32, P < 0.05), suggesting that the random errors were too great for 

meaningful analyses using personal PID data. Although a relationship exists between 

mobile-area and personal measurements, as reflected by the moderate correlation (rs = 0.60, 

P < 0.05) for the full-shift averages from canister samples (Supplementary Figure S2a, 

available at Annals of Occupational Hygiene online), poor (rs = 0.36, P < 0.05) to no 

relationships (rs = −0.19, P = 0.20) were observed for 5-min average (Supplementary Figure 

S2b, available at Annals of Occupational Hygiene online) or full-shift average 

(Supplementary Figure S2c, available at Annals of Occupational Hygiene online) of the PID 

samples; the personal and mobile-area PIDs were different instrument models with different 

LODs and sampling modes (passive versus active). Thus, further analysis using the personal 

PID data was not conducted.

The frequency of the task and other predictor variables is presented in Table 1. The most 

common tasks were: using quaternary ammonium compounds (quats) containing products to 

clean surfaces (4.4%), using quats products to clean floors (3.4%), using alcohol wipes on 

skin (2.3%), using products containing ethanolamines, benzyl alcohol or glycol ethers to 

strip floors (2.0%), and using enzymatic cleaners on instruments (1.5%). Housekeepers, 

registered nurses, and floor strippers/waxers were the most frequently measured 

occupations. Most measurements were collected in the operating room/gastroenterology, 

wards, and critical care areas. The 5-min average temperature ranged from 17 to 36°C with a 

mean of 21.8°C and median of 21.9°C; relative humidity ranged from 28 to 83% with a 

mean of 53.8% and median of 53%.

The posterior distributions of the mobile-area GM, GSD, and P95 cTVOC concentrations for 

tasks (exponentiated values), based on the MCMC chains and additional simulations for 

P95, from the model with a single variable are displayed in Fig. 2 and Supplementary Table 

S2 (available at Annals of Occupational Hygiene online). There was a high overall average 

cTVOC exposure reflected by the GM of 925 ppb for the reference task of ‘no product use’, 

which we denote as average ‘background’ exposures across hospitals, units and occupations. 

The recurrent use of hand sanitizers and cleaning of floors and surfaces is likely responsible 

for the high background level of TVOC exposure in hospitals. The GM concentrations of 

cTVOC were similar across tasks and ranged from 2,091 ppb for ‘quats skin wipes’ to 387 

ppb for ‘formaldehyde in laboratory’ (Fig. 2a). Other high-exposure cleaning tasks included: 

‘enzymatic cleaner’, ‘chlorine skin wipes’, ‘EA/GE based glass cleaner’, ‘HLD instrument 
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cleaner’. Note, the exposures associated with tasks are for TVOC, and not for specific 

chemicals in the products such as chlorine or formaldehyde. The GSDs were similar across 

tasks (Fig. 2c), and were among the highest for ‘detergent bathroom cleaner’, ‘HLD 

instrument cleaner’, ‘alcohol skin wipe’, and ‘alcohol surface cleaner’. The posterior 

distributions of both the GM and GSD were quite variable with a wide range of CI. The P95 

representing peak exposures (Fig. 2b) showed discernible differences among tasks, and 

ranged from a median of 17,360 ppb for ‘quats skin wipes’ to 3,172 ppb for ‘formaldehyde 

in laboratory’. The GM and P95 were highly correlated (rp = 0.91, P < 0.05), but there were 

many differences in the rank order of adjacent values between the two metrics across the 

tasks.

The predicted GM task exposures from models with the main fixed effect of task and a 

single time-invariant covariate are presented in Supplementary Figure S3 (available at 

Annals of Occupational Hygiene online), which shows variable task exposures across 

occupation and unit. Posterior distribution statistics from the time-invariant and time-varying 

covariates are presented in Supplementary Table S3 (available at Annals of Occupational 
Hygiene online). Seven of the 12 time-varying covariates had p.mn. in the expected 

direction, and included use of sprays only (17.5%) which was associated with increasing 

exposures, while presence of local exhaust ventilation (−14.1%), large room volume 

(−10.4%), automatic sterilizer use (−32.7%), sampler distance >3 ft. from worker (−0.6%), 

negative room pressure (−1.5%), and increasing humidity (−1.1%) were all associated with 

decreasing exposures. These seven covariates were included in the final multiple regression 

model. Air changes per hour >10, presence of general ventilation, microfiber mop use, and 

increasing temperature were associated with increasing exposure, while large product 

amount was associated with decreasing exposure; these patterns were in the opposite 

direction than expected.

The posterior distributions of the GM and P95 cTVOC exposures for selected tasks-

occupation combinations (with n > 5) related to (i) patient cleaning, (ii) surface cleaning, 

and (iii) instrument cleaning are displayed in Fig. 3 and Supplementary Table S4 (available 

at Annals of Occupational Hygiene online). It is note-worthy that using products containing 

alcohol, chlorine or quats used on patient skin or for surface cleaning had among the highest 

GM cTVOC exposures for several occupations. High GM cTVOC exposures were also 

associated with the use of products containing ethanolamine/glycol ether-containing 

products for glass and surface cleaning among housekeepers. Lowest GM cTVOC exposures 

were predicted for instrument cleaning tasks. Similar trends were observed for the P95, 

though the rank order across occupation-tasks was occasionally different and a high 

correlation (rp = 0.86, P < 0.05) was observed between the two metrics. Differences among 

task-occupation exposures were more discernible with the P95 metric than with the GM 

exposure metric. Complementary results for the unit-specific tasks are presented in 

Supplementary Table S5 and Figure S4 (available at Annals of Occupational Hygiene 
online). Patient cleaning and surface cleaning tasks using quats products in dental clinics, 

wards, central supply, and operating room/gastroenterology unit had among the highest GM 

cTVOC exposures. Cleaning surfaces and instruments using several products such as quats, 

enzymatic cleaners, phenolics, and HLD were also associated with high GM cTVOC 

exposures in the operating room/gastroenterology unit. Similar trends were observed for the 
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P95 with high correlation between the metrics (rp = 0.91, P < 0.05), though the rank order 

across unit-tasks was occasionally different between the two metrics.

The final multiple regression model for the (log-transformed) cTVOC concentrations 

provides the mean and median parameters for tasks and their 95% CI, the task-specific 

standard deviation (SD) and their 95% CI, the % change from the reference category, and 

parameters for the spline and random effect variances (Table 2). The full multiple regression 

model included the following covariates and their influence on cTVOC exposure: use of 

automatic sterilizer (−36.8%), presence of local exhaust (−13.4%), large room size 

(−11.2%), sampler distance >3ft from worker (−1.6%), increasing humidity (−1.3%) and use 

of spray products only (20.6%). The parameter for room pressure switched signs in the final 

model with the effect in the opposite direction than expected, and was thus not included in 

the final model.

Discussion

Healthcare workers are exposed to complex mixtures of chemicals that can include 

simultaneous exposure to multiple asthmagens (Quirce and Barranco, 2010). This complex 

exposure scenario varies with task, location, and across days depending on the combination 

of products used, application methods, control measures, and other factors (Su et al., 2018). 

Furthermore, both acute and chronic respiratory health outcomes are associated with short-

term exposures (Siracusa et al., 2013; Hawley et al., 2017). However, comprehensive 

quantitative measures of exposures are lacking and challenging to collect, because multiple 

sampling and analytical methods are required, compounded by the difficulties in conducting 

personal monitoring of healthcare professionals. Additionally, traditional single-sample full-

shift exposure measurements cannot capture within work-shift variability, and will thus not 

yield relevant measures of short-term exposures for use in epidemiologic studies, or for 

devising effective interventions. TVOC may serve as a useful surrogate of the complex 

mixture of chemicals present in cleaning and disinfecting products, especially as they may 

contain multiple or unknown asthmagens. Moreover, real-time TVOC measurements can 

provide additional exposure characteristics such as short-duration mean or peak exposures 

that may be particularly relevant for asthma and irritation symptoms, and essential for 

identifying high-exposure tasks for targeted interventions. In the absence of real-time 

instruments for measuring multiple chemicals simultaneously, decisions have to made 

whether to measuring a single chemical among several etiologically relevant chemicals or a 

non-specific surrogate of mixture, or whether to collect time-integrated versus real-time or 

personal versus mobile-area measurements; each decision entails a balance of the benefits 

and limitations of the selected approach, and balance between the potential bias from not 

considering some etiologically relevant exposures versus exposure misclassification arising 

from using a non-specific surrogate exposure for the mixture. Whereas portable GC/MS 

instruments are available that can accurately quantify multiple VOCs in near real-time, their 

regular use in the field is hindered by several factors including their cost, their requirement 

for gases and for sample injection at time intervals, need for a specially trained technician to 

collect the samples, and while these units are labeled portable, it would be very difficult to 

collect short-duration personal task samples from a mobile worker such as a nurse.
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In this study, we used a newly developed statistical method to quantify short-duration mean 

and peak exposures to cTVOC associated with specific tasks. In addition to addressing the 

statistical challenges of modeling non-stationary time-series with censored data and 

hierarchical structure, the use of MCMC within a Bayesian context provides information on 

the distributions of the parameters of interest across credible values. These estimates may be 

used in probabilistic risk assessment, which incorporates exposure variability into the risk 

assessment process to provide a more complete characterization of risks. In this study, the 

overall cleaning-related mobile-area GM cTVOC exposures ranged from 670 ppb for ‘quats 

bathroom cleaning’ to 2091 ppb for ‘quats skin wipe’. Some of the highest mobile-area GM 

exposures were associated with the use of quats-, alcohol- and chorine-based skin wipes, 

quats- and ethanolamine/glycol ether-based surface cleaning tasks, as well as use of HLD for 

cleaning instruments among specific occupations and locations. Although no previous 

studies report task-specific TVOC concentrations in hospitals, similar results were reported 

in a study of simulated cleaning in which the authors found average personal TVOC 

concentration in the range of 560 ppb (cleaning toilet bowls) to 6490 ppb (sink cleaning) in a 

small bathroom, and 20 ppb (mirror cleaning) to 1360 ppb (sink cleaning)in a large 

bathroom (Bello et al., 2010). Likewise, in a multiple regression model of full-shift mobile-

area TVOC exposures from canister samples collected on the same population as the present 

study, Su et al. (2018) included several product-application tasks that were significant in 

univariate analysis. Including all product-application tasks (regardless of their significance) 

in the multiple regression model yielded the following mobile-area TVOC task estimates 

(GM-ppb): alcohol skin prep (1560), alcohol surface cleaner (906), bleach surface cleaner 

(1022), chlorine skin prep (980), detergent bathroom cleaner (1121), detergent instrument 

cleaner (1888), detergent surface cleaner (1074), EA/BA/GE floor stripper (998), EA/GE 

glass cleaner (1303), EA/GE surface cleaner (869), enzymatic cleaner (640), iodine skin 

prep (243), phenolic surface cleaner (2597), quats bathroom cleaner (244), quats floor 

cleaner (2283), quats skin prep (1270), quats surface cleaner (1226) (data not reported by Su 

et al, 2018). For a majority of the tasks, the PID GM from the present study were lower than 

those calculated from the model of the canister samples. We are presently investigating the 

causes of differences in GM tasks predicted from a model using real-time measurements 

versus one using time-integrated measurements from the same population.

Metrics of peak exposure may be particularly relevant and important for investigating 

asthma and respiratory symptoms, but such metrics have not been used in studies of cleaning 

and disinfecting chemical exposure (Siracusa et al., 2013). Peak exposures are of concern 

because they can potentially overwhelm the capacity of normal defense mechanisms and 

induce adverse health effects, and may be relevant for disease processes related to 

inflammation, irritation, or immune sensitization (Smith, 2001; Kriebel et al., 2007; Smith 

and Kriebel, 2008). Numerous studies have reported associations between peak exposure, 

inadvertent exposure or spills and asthma symptoms in a variety of workplace settings, and 

in the general population (Goldstein and Weinstein, 1986; Andersson et al., 2003; Andersson 

et al., 2006; Amster et al., 2014). Furthermore, high exposure to irritants is associated with 

reactive airways disease syndrome (Heederik, 2003). Different metrics have been used to 

characterize peak exposures based on intensity, duration, time interval between peaks, and 

frequency and aggregation of peaks from real-time data (Preller et al., 2004). In this study of 
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spray painting operations, principal components analysis of these peak metrics revealed 

three independent factors related to intensity, variability, and duration that sufficiently 

characterized peak exposures. In a commentary, Kumagai (2004) expressed these findings in 

terms of real-time exposure distribution parameters and autocorrelation, i.e. the GM, GSD, 

and autocorrelation coefficient, all of which are parameters obtained from our model, but the 

single autocorrelation coefficient is replaced by an autocorrelation function. Real-time 

exposure monitoring provides flexibility in post hoc definitions of peaks, and in examining 

the correlations among the various peak metrics and their utility in predicting risk of health 

effects. In this study, we used 15-min averages and quantified peaks as the median P95 of 

the posterior distributions for short-duration tasks. This metric, representing exposure 

intensity, is easy to interpret when used in epidemiologic studies, to make decisions on 

interventions, or to evaluate the efficacy of control measures. The overall cleaning-related 

peak mobile-area cTVOC exposures ranged from 4843 ppb for ‘detergent skin cleaning’ to 

17 360 ppb for ‘quats skin wipe’. While the P95 were well correlated with the GM (rp = 

0.86, P < 0.05), the rank order for the tasks varied between the two metrics. The range of 

mobile-area concentrations observed in our study are similar to the personal exposures from 

a study of simulated cleaning, in which the authors reported peak (highest) TVOC 

concentrations of 710 ppb for cleaning toilet bowls to 11 360/11 110 ppb for mirror 

cleaning/sink cleaning tasks in a small bathroom, and 140 ppb for mirror cleaning to 2130 

ppb for sink cleaning in a large bathroom (Bello et al., 2010).

In this study we identified several factors that influenced exposure including automatic 

sterilizer use, presence of local exhaust, large room size, and use of spray products only. The 

few studies that have investigated determinants of exposures in healthcare settings have also 

identified some common exposure determinants. A study of radiographers found ventilation, 

workload, and time in certain work areas as important determinants of exposure to 

glutaraldehyde, acetic acid, and sulfur dioxide (Teschke et al., 2002). Bello et al. (2013) 

identified product type, task, room volume and ventilation, and product concentration as 

significant predictors of 2-butoxyethanol exposures, in a quasi-experimental study. In our 

previous work, modeling the determinants of exposure to full-shift mobile-area TVOC, 

ethanol, isopropanol, acetone, d-limonene, α-pinene and chloroform among several 

healthcare occupations identified tasks, product-application, product ingredients, and local 

exhaust ventilation as significant predictors (Su et al., 2018). Among cleaners in a variety of 

work settings, spraying and amount of product used were important determinants of 

monoethanolamine exposure, while spraying and cross ventilation were important predictors 

of glycol ether exposure (Melchior Gerster et al., 2014).

Reviews of epidemiologic studies have called for quantitative exposure estimates to better 

characterize the health risk of asthma outcomes (Siracusa et al., 2013). The GM and P95 

cTVOC exposure estimates, along with the VOC-specific GM exposure estimates reported in 

Su et al. (2018) for occupation- or unit-specific tasks can be considered as a job-task or unit-

task exposure matrix (JTEM or UTEM), and can be assigned to participants in 

epidemiologic studies who report tasks in their questionnaire, e.g. in the detailed cleaning 

and disinfecting modules used by different investigators (Kurth et al., 2017; Caridi et al., 

2019). However, within-job/unit/ task differences stemming from work practices or 

workplace conditions are not accounted for, as everyone in the same J/U-TEM cell is 
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assigned the same exposure. These assigned exposures can be refined by combining them 

with worker-specific information on the frequency and duration of tasks, to capture the 

between-subject variation in exposure and thus rendering the resulting estimates more 

representative of individual experience. In addition, the J/U-TEM exposure estimates can be 

further refined by incorporating other exposure characteristics reported in questionnaires and 

collected during exposure assessment, such as use of automatic sterilizers or sprays or other 

exposure determinants. These hybrid approaches are a significant improvement over simple 

application of a JTEM because they account for the often large between-worker variation 

within the same JTEM cell (Kromhout and Vermeulen, 2001; Semple et al., 2004). The 

exposure estimates generated in this study can also be combined with, or used to calibrate 

other JTEMs not based on quantitative exposure such as the JTEM of nurses described by 

Quinot et al. (2017) for exposure to various cleaning and disinfecting chemicals in different 

settings such as the emergency room, or the JTEM of 12 occupational categories described 

by Delclos et al. (2007), for different types of exposures including cleaning and disinfecting 

agents in different work settings. However, both these JTEMs include some occupations in 

healthcare settings outside of hospitals which will limit the extent of integration of the two 

approaches. The hybrid methods of combining multiple sources of information have been 

previously described (Friesen et al., 2012; Koh et al., 2014), and can be implemented within 

a Bayesian approach to improve exposure assessment for epidemiologic studies.

There are several limitations with the use of direct-reading instruments related to their 

performance characteristics, such as lack of specificity, issues of validity, precision, 

calibration, etc. Moreover, we could not account for differences in instrument responses for 

different chemical mixtures likely associated with different tasks, which would lead to 

increased uncertainty in task-specific exposure estimates. The PID manufacturer supplies 

response factors for specific VOCs to obtain a correction factor for a mixture using their 

mixture equation, or to estimate exposure to a specific VOC in a mixture. However, these 

response factors may not take into account the potential effects on the detector response of 

unpredictable mixture components, leading to uncertainty in the response factors provided. 

The proportion of the VOCs quantified in full-shift samples and the manufacturer-provided 

instrument response correction factors are presented in Supplementary Table S6 (available at 

Annals of Occupational Hygiene online) (Rae Systems Inc., 2013). Since the VOC mixture 

in healthcare is predominated by ethanol and 2-propanol which have response factors much 

greater than 1, we expected the PID to underestimate TVOC exposures. For situations when 

the proportion of alcohol was low and the composition was predominated by benzene, 

toluene, ethylbenzene and xylenes (BTEX) whose response factors are much less than 1, the 

PID likely overestimated TVOC exposures. Our findings reported in Fig. 1 are consistent 

with these observations. Without accurate knowledge of the VOC mixture composition over 

the short-term, the best approach was to use the simple correction factor to account for the 

underestimation of the TVOC by the PID. Although the TVOC may capture the total VOC 

load, a small signal from the combination of health-relevant VOCs may be masked by the 

very large background alcohol signal which is present at the highest concentrations of all 

VOCs. Thus the advantages of using real-time TVOC measurements that provide metrics of 

peak mixture exposure may be lost due to the high background level of TVOC that can 

obscure small differences in etiologically relevant exposures. A compromise in using TVOC 
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as a surrogate of mixed exposure is the missed opportunity to identify specific etiologically 

relevant chemicals.

Conclusion

In this study, we used a newly developed statistical approach to quantify short-duration mean 

and peak exposures to TVOCs associated with specific cleaning product-application tasks 

that may be particularly relevant for epidemiologic studies of asthma and irritation 

symptoms. We also identified several factors such as automatic sterilizer use, presence of 

local exhaust, large room size, and use of spray products only that influenced TVOC 

exposures. Detailed understanding of factors affecting TVOC exposure can inform targeted 

interventions to reduce exposures. This study shows that real-time data can be appropriately 

analyzed to yield important information on short-term exposure variability and exposure 

determinants if contextual information is gathered systematically, and attention is paid to 

instrument calibration.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Scatter plot of full-shift average TVOC concentrations from time-integrated canister and 

full-shift average PID samples (a) mobile-area samples and (b) personal samples.
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Figure 2. 
Posterior distributions of the cTVOC summary measures for tasks showing: (a) GM and 

95% CI, (b) P95 and IQR, and (c) GSD and 95%CI. Footnotes: Open diamond = mean; open 

circle = median; intervals around the GM and GSD are 95% CI; intervals around the P95 are 

inter quartile range (25–75%); model parameters are exponentiated to get GM, GSD, P95. 

A1: Alcohol Skin Wipe; A2: Alcohol Surface Cleaner; B1: Quats Bathroom Cleaner; B2: 

Quats Floor Cleaner; B3: Quats Skin Wipe; B4: Quats Surface Cleaner; C1: Phenolics 

Cleaner; D1: Chlorine Surface Cleaner-Bleach; D2: Chlorine Skin Wipe; E1: Iodine Skin 

Wipe; F1: Ethanolamine/Glycol Ether Floor Stripper; F2: Ethanolamine/Glycol Ether Glass 

Cleaner; F3: Ethanolamine/Glycol Ether Surface Cleaner; G1: Detergent Bathroom Cleaner; 

G2: Detergent Skin Cleaner; G3: Detergent Surface Cleaner; G4: Detergent Instrument 

Cleaner; H1: Enzymatic Instrument Cleaner; I1: High-Level Instrument Cleaner; J1: Dental 

Product; K1: Solvent Cleaner; L1: Formaldehyde in Laboratory; L2: Non-Cleaner in 
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Laboratory; L3: Non-Cleaners in Dialysis; L4: Non-Cleaner Medication; L5: Other Non-

Cleaner; M1: No Product Used.
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Figure 3. 
Posterior distributions of the GM (top panels), and P95 (bottom panels) of cTVOC summary 

statistics for selected (a) patient cleaning, (b) surface cleaning, and (c) instrument cleaning 

task-occupation combinations. Footnotes: Open diamond = mean; open circle = median; 

intervals around the GM are 95% CI; intervals around the P95 are inter quartile range (25–

75%); model parameters exponentiated to get GM and P95; CLT = clinical laboratory 

technician; CAN = certified nursing assistant; DA = dental assistant; DLT = dental 

laboratory technician; ET = endoscopy technician; FSW = floor stripper/waxer; HK = 

housekeeper; LPN = licensed practical nurse; MAT = medical appliance technician; MEP = 

medical equipment preparer; PHT = pharmacy technician; RN = registered nurse; RT = 

respiratory therapist; and ST = surgical technologist.
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